Shear stress enhances human endothelial cell wound closure in vitro.

نویسندگان

  • M L Albuquerque
  • C M Waters
  • U Savla
  • H W Schnaper
  • A S Flozak
چکیده

Repair of the endothelium occurs in the presence of continued blood flow, yet the mechanisms by which shear forces affect endothelial wound closure remain elusive. Therefore, we tested the hypothesis that shear stress enhances endothelial cell wound closure. Human umbilical vein endothelial cells (HUVEC) or human coronary artery endothelial cells (HCAEC) were cultured on type I collagen-coated coverslips. Cell monolayers were sheared for 18 h in a parallel-plate flow chamber at 12 dyn/cm(2) to attain cellular alignment and then wounded by scraping with a metal spatula. Subsequently, the monolayers were exposed to a laminar shear stress of 3, 12, or 20 dyn/cm(2) under shear-wound-shear (S-W-sH) or shear-wound-static (S-W-sT) conditions for 6 h. Wound closure was measured as a percentage of original wound width. Cell area, centroid-to-centroid distance, and cell velocity were also measured. HUVEC wounds in the S-W-sH group exposed to 3, 12, or 20 dyn/cm(2) closed to 21, 39, or 50%, respectively, compared with only 59% in the S-W-sT cells. Similarly, HCAEC wounds closed to 29, 49, or 33% (S-W-sH) compared with 58% in the S-W-sT cells. Cell spreading and migration, but not proliferation, were the major mechanisms accounting for the increases in wound closure rate. These results suggest that physiological levels of shear stress enhance endothelial repair.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vascular endothelial wound closure under shear stress: role of membrane fluidity and flow-sensitive ion channels.

Sufficiently rapid healing of vascular endothelium following injury is essential for preventing further pathological complications. Recent work suggests that fluid dynamic shear stress regulates endothelial cell (EC) wound closure. Changes in membrane fluidity and activation of flow-sensitive ion channels are among the most rapid endothelial responses to flow and are thought to play an importan...

متن کامل

HIGHLIGHTED TOPIC Biomechanics and Mechanotransduction in Cells and Tissues Vascular endothelial wound closure under shear stress: role of membrane fluidity and flow-sensitive ion channels

Gojova, Andrea, and Abdul I. Barakat. Vascular endothelial wound closure under shear stress: role of membrane fluidity and flow-sensitive ion channels. J Appl Physiol 98: 2355–2362, 2005. First published February 10, 2005; doi:10.1152/japplphysiol.01136.2004.— Sufficiently rapid healing of vascular endothelium following injury is essential for preventing further pathological complications. Rece...

متن کامل

Phyllanthus emblica L. Enhances Human Umbilical Vein Endothelial Wound Healing and Sprouting

Endothelial dysfunction is the hallmark of impaired wound healing and increased risk of cardiovascular disease. Antioxidants from natural sources decrease oxidative stress and protect against cellular damage caused by reactive oxygen species (ROS). In this study, we examined the antioxidant constituents and capacity of Phyllanthus emblica L. (PE) fruit in freeze-dried power form. The pharmacolo...

متن کامل

Resveratrol promotes endothelial cell wound healing under laminar shear stress through an estrogen receptor-α-dependent pathway.

Restenosis is an adverse outcome of angioplasty, characterized by vascular smooth muscle cell (VSMC) hyperplasia. However, therapies targeting VSMC proliferation delay re-endothelialization, increasing the risk of thrombosis. Resveratrol (RESV) inhibits restenosis and promotes re-endothelialization after arterial injury, but in vitro studies assessing RESV-mediated effects on endothelial cell g...

متن کامل

Effect of Purification of Human Adipose-derived Mesenchymal Stem Cells on the Expression of vWF Cell Factor Under Chemical and Mechanical Conditions

Introduction: Human adipose-derived mesenchymal stem cells (hADSCs) are easily accessible in the body, and under appropriate conditions, they can be directed toward various phenotypes. Therefore, hADSCs have been considered as a potential cell source for tissue engineering applications. hADSCs are able to differentiate into endothelial cells which covers the interior surface of vessels, in vi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 279 1  شماره 

صفحات  -

تاریخ انتشار 2000